Publication:
Cementing mussels to oysters in the pteriomorphian tree: a phylogenomic approach

Thumbnail Image

Date

2016

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Royal Society
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Lemer, Sarah, Vanessa L. González, Rüdiger Bieler, and Gonzalo Giribet. 2016. “Cementing mussels to oysters in the pteriomorphian tree: a phylogenomic approach.” Proceedings of the Royal Society B: Biological Sciences 283 (1833): 20160857. doi:10.1098/rspb.2016.0857. http://dx.doi.org/10.1098/rspb.2016.0857.

Research Data

Abstract

Mussels (Mytilida) are a group of bivalves with ancient origins and some of the most important commercial shellfish worldwide. Mytilida consists of approximately 400 species found in various littoral and deep-sea environments, and are part of the higher clade Pteriomorphia, but their exact position within the group has been unstable. The multiple adaptive radiations that occurred within Pteriomorphia have rendered phylogenetic classifications difficult and uncertainty remains regarding the relationships among most families. To address this phylogenetic uncertainty, novel transcriptomic data were generated to include all five orders of Pteriomorphia. Our results, derived from complex analyses of large datasets from 41 transcriptomes and evaluating possible pitfalls affecting phylogenetic reconstruction (matrix occupancy, heterogeneity, evolutionary rates, evolutionary models), consistently recover a well-supported phylogeny of Pteriomorphia, with the only exception of the most complete but smallest data matrix (Matrix 3: 51 genes, 90% gene occupancy). Maximum-likelihood and Bayesian mixture model analyses retrieve strong support for: (i) the monophyly of Pteriomorphia, (ii) Mytilida as a sister group to Ostreida, and (iii) Arcida as sister group to all other pteriomorphians. The basal position of Arcida is congruent with its shell microstructure (solely composed of aragonitic crystals), whereas Mytilida and Ostreida display a combination of a calcitic outer layer with an aragonitic inner layer composed of nacre tablets, the latter being secondarily lost in Ostreoidea.

Description

Keywords

phylogenomics, genome, phylogeny, Mollusca, Bivalvia, evolutionary rate

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories