Publication:
Transactivation of human osteoprotegerin promoter by GATA-3

Thumbnail Image

Open/View Files

Date

2015

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Publishing Group
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Kao, Shyan-Yuan, and Konstantina M. Stankovic. 2015. “Transactivation of human osteoprotegerin promoter by GATA-3.” Scientific Reports 5 (1): 12479. doi:10.1038/srep12479. http://dx.doi.org/10.1038/srep12479.

Research Data

Abstract

Osteoprotegerin (OPG) is a key regulator of bone remodeling. Mutations in OPG are involved in a variety of human diseases. We have shown that cochlear spiral ganglion cells secrete OPG at high levels and lack of OPG causes sensorineural hearing loss in addition to the previously described conductive hearing loss. In order to study the regulation of OPG expression, we conducted a database search on regulatory elements in the promoter region of the OPG gene, and identified two potential GATA-3 binding sites. Using luciferase assays and site directed mutagenesis, we demonstrate that these two elements are GATA-3 responsive and support GATA-3 transactivation in human HEK and HeLa cells. The expression of wild type GATA-3 activated OPG mRNA and protein expression, while the expression of a dominant negative mutant of GATA-3 or a GATA-3 shRNA construct reduced OPG mRNA and protein levels. GATA-3 deficient cells generated by expressing a GATA-3 shRNA construct were sensitive to apoptosis induced by etoposide and TNF-α. This apoptotic effect could be partly prevented by the co-treatment with exogenous OPG. Our results suggest new approaches to rescue diseases due to GATA-3 deficiency – such as in hypoparathyroidism, sensorineural deafness, and renal (HDR) syndrome – by OPG therapy.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories