Publication:
AXIS: Generating Explanations at Scale with Learnersourcing and Machine Learning

Thumbnail Image

Date

2016

Published Version

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Williams, Joseph Jay, Juho Kim, Anna Rafferty, Samuel Maldonado, Krzysztof Z. Gajos, Walter S. Lasecki, and Neil Heffernan. 2016. AXIS: Generating Explanations at Scale with Learnersourcing and Machine Learning. In Proceedings of the Third ACM Conference on Learning @ Scale (L@S '160, Edinburgh, Scotland, April 25-26, 2016: 379-388.

Research Data

Abstract

While explanations may help people learn by providing information about why an answer is correct, many problems on online platforms lack high-quality explanations. This paper presents AXIS (Adaptive eXplanation Improvement System), a system for obtaining explanations. AXIS asks learners to generate, revise, and evaluate explanations as they solve a problem, and then uses machine learning to dynamically determine which explanation to present to a future learner, based on previous learners’ collective input. Results from a case study deployment and a randomized experiment demonstrate that AXIS elicits and identifies explanations that learners find helpful. Providing explanations from AXIS also objectively enhanced learning, when compared to the default practice where learners solved problems and received answers without explanations. The rated quality and learning benefit of AXIS explanations did not differ from explanations generated by an experienced instructor.

Description

Keywords

explanation, learning at scale, crowdsourcing, learnersourcing, machine learning, adaptive learning

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories