Publication:
Expression and Function of Nkx6.3 in Vertebrate Hindbrain

No Thumbnail Available

Date

2008-07-30

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier BV
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Hafler, Brian P., Michael Choi, Ramesh Shivdasani, David H. Rowitch. "Expression and Function of Nkx6.3 in Vertebrate Hindbrain." Brain Research 1222 (2008): 42-50. DOI: 10.1016/j.brainres.2008.04.072

Research Data

Abstract

Homeodomain transcription factors serve important functions in organogenesis and tissue differentiation, particularly with respect to the positional identity of individual cells. The Nkx6 subfamily controls tissue differentiation in the developing central nervous system where they function as transcriptional repressor proteins. Recent work indicates that Nkx6.3 is expressed in hindbrain V2 interneurons that co-express Nkx6.1, suggesting the possibility of functional redundancy. Here, we report that Nkx6.3 expression is specific to Chx10+ V2a interneurons but not Gata3+ V2b interneurons of the hindbrain, and that Nkx6.3 expression appears to mark cells of the prospective medullary reticular formation. Molecular analysis of Nkx6.3 null embryonic mouse hindbrain did not reveal detectable defects in progenitor markers, motor neuron or V2 interneuron sub-types. Forced expression of Nkx6.3 and Nkx6.1 promote V2 interneuron differentiation in the developing chick hindbrain. These findings indicate Nkx6.3 function is dispensable for CNS development and lead to the proposal that absence of overt defects is due to functional compensation from a related homeodomain transcription factor.

Description

Keywords

Developmental Biology, Clinical Neurology, Molecular Biology, General Neuroscience

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories