Publication:
The Quantum Theory of Optical Coherence

Thumbnail Image

Open/View Files

Date

1963

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society (APS)
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Glauber, Roy J. 1963. “The Quantum Theory of Optical Coherence.” Physical Review 130 (6) (June 15): 2529–2539. doi:10.1103/physrev.130.2529.

Research Data

Abstract

The concept of coherence which has conventionally been used in optics is found to be inadequate to the needs of recently opened areas of experiment. To provide a fuller discussion of coherence, a succession of correlation functions for the complex field strengths is defined. The n th order function expresses the correlation of values of the fields at 2 n different points of space and time. Certain values of these functions are measurable by means of n -fold delayed coincidence detection of photons. A fully coherent field is defined as one whose correlation functions satisfy an infinite succession of stated conditions. Various orders of incomplete coherence are distinguished, according to the number of coherence conditions actually satisfied. It is noted that the fields historically described as coherent in optics have only first-order coherence. On the other hand, the existence, in principle, of fields coherent to all orders is shown both in quantum theory and classical theory. The methods used in these discussions apply to fields of arbitrary time dependence. It is shown, as a result, that coherence does not require monochromaticity. Coherent fields can be generated with arbitrary spectra.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories