Publication:
Time-Lapse Cryptography

Thumbnail Image

Open/View Files

Date

2006

Published Version

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Rabin, Michael O. and Christopher Thorpe. 2006. Time-Lapse Cryptography. Harvard Computer Science Group Technical Report TR-22-06.

Research Data

Abstract

The notion of “sending a secret message to the future” has been around for over a decade. Despite this, no solution to this problem is in common use, or even attained widespread acceptance as a fundamental cryptographic primitive. We name, construct and specify an implementation for this new cryptographic primitive, “Time-Lapse Cryptography”, with which a sender can encrypt a message so that it is guaranteed to be revealed at an exact moment in the future, even if this revelation turns out to be undesirable to the sender. Our solution combines new ideas with Pedersen distributed key generation, Feldman verifiable threshold secret sharing, and ElGamal encryption, all of which rest upon the single, broadly accepted Decisional Diffie-Hellman assumption. We develop a Time-Lapse Cryptography Service (“the Service”) based on a network of parties who jointly perform the service. The protocol is practical and secure: at a given time T the Service publishes a public key so that anyone can use it, even anonymously. Senders encrypt their messages with this public key whose private key is not known to anyone – not even a trusted third party – until a predefined and specific future time T + δ, at which point the private key is constructed and published. At or after that time, anyone can decrypt the ciphertext using this private key. The Service is envisioned as a public utility publishing a continuous stream of encryption keys and subsequent corresponding time-lapse decryption keys. We complement our theoretical foundation with descriptions of specific attacks and defenses, and describe important applications of our service in sealed bid auctions, insider stock sales, clinical trials, and electronic voting.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories