Publication: PDGFRα Is a Key Regulator of T1 and T3's Differential Effect on SMA Expression in Human Corneal Fibroblasts
Open/View Files
Date
2017
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
The Association for Research in Vision and Ophthalmology
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Sriram, Sriniwas, Jennifer A. Tran, Xiaoqing Guo, Audrey E. K. Hutcheon, Hetian Lei, Andrius Kazlauskas, and James D. Zieske. 2017. “PDGFRα Is a Key Regulator of T1 and T3's Differential Effect on SMA Expression in Human Corneal Fibroblasts.” Investigative Ophthalmology & Visual Science 58 (2): 1179-1186. doi:10.1167/iovs.16-20016. http://dx.doi.org/10.1167/iovs.16-20016.
Research Data
Abstract
Purpose The goal of this study was to examine the mechanism behind the unique differential action of transforming growth factor β3 (TGF-β3) and TGF-β1 on SMA expression. It was our hypothesis that platelet-derived growth factor receptor α (PDGFRα) played a key role in determining TGF-β3's response to wounding. Methods: A stable cell line, human corneal fibroblast (HCF)-P, was created from HCFs by knocking down PDGFRα expression using a lentivirus-delivered shRNA sequence. A three-dimensional (3D) in vitro model was constructed by culturing HCF or HCF-P on poly-transwell membranes for 4 weeks in the presence and absence of 0.1 ng/mL TGF-β1 or -β3. At the end of 4 weeks, the constructs were processed for immunofluorescence and reverse transcription–quantitative polymerase chain reaction (RT-qPCR). In addition, HCF and HCF-P cell migration was evaluated. Results: In HCF, TGF-β3 treatment resulted in significantly lower α-smooth muscle actin (SMA) mRNA expression and immunolocalization when compared to TGF-β1, while in HCF-P, both TGF-β1 and -β3 treatment increased the SMA mRNA expression and immunolocalization compared to both the untreated HCF-P control and TGF-β3-treated HCF. Human corneal fibroblast-P also had a lower migration rate and construct thickness when compared to HCF. Conclusions: These results show that TGF-β3 decreases SMA in HCF, while remarkably increasing SMA in HCF-P, thus indicating that the presence or absence of PDGFRα elicits contrasting responses to the same TGF-β3 treatment. Understanding the role of PDGFRα in TGF-β3's ability to stimulate SMA may potentially help in understanding the differential functions of TGF-β1 and TGF-β3 in corneal wound healing.
Description
Other Available Sources
Keywords
TGFβ3, corneal scarring, PDGF, 3D cell culture
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service