Publication: Longitudinal measurement and hierarchical classification framework for the prediction of Alzheimer’s disease
Open/View Files
Date
2017
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Nature Publishing Group
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Huang, M., W. Yang, Q. Feng, W. Chen, M. W. Weiner, P. Aisen, R. Petersen, et al. 2017. “Longitudinal measurement and hierarchical classification framework for the prediction of Alzheimer’s disease.” Scientific Reports 7 (1): 39880. doi:10.1038/srep39880. http://dx.doi.org/10.1038/srep39880.
Research Data
Abstract
Accurate prediction of Alzheimer’s disease (AD) is important for the early diagnosis and treatment of this condition. Mild cognitive impairment (MCI) is an early stage of AD. Therefore, patients with MCI who are at high risk of fully developing AD should be identified to accurately predict AD. However, the relationship between brain images and AD is difficult to construct because of the complex characteristics of neuroimaging data. To address this problem, we present a longitudinal measurement of MCI brain images and a hierarchical classification method for AD prediction. Longitudinal images obtained from individuals with MCI were investigated to acquire important information on the longitudinal changes, which can be used to classify MCI subjects as either MCI conversion (MCIc) or MCI non-conversion (MCInc) individuals. Moreover, a hierarchical framework was introduced to the classifier to manage high feature dimensionality issues and incorporate spatial information for improving the prediction accuracy. The proposed method was evaluated using 131 patients with MCI (70 MCIc and 61 MCInc) based on MRI scans taken at different time points. Results showed that the proposed method achieved 79.4% accuracy for the classification of MCIc versus MCInc, thereby demonstrating very promising performance for AD prediction.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service