Publication:
Methylome-wide Association Study of Atrial Fibrillation in Framingham Heart Study

Thumbnail Image

Date

2017

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Publishing Group
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Lin, H., X. Yin, Z. Xie, K. L. Lunetta, S. A. Lubitz, M. G. Larson, D. Ko, et al. 2017. “Methylome-wide Association Study of Atrial Fibrillation in Framingham Heart Study.” Scientific Reports 7 (1): 40377. doi:10.1038/srep40377. http://dx.doi.org/10.1038/srep40377.

Research Data

Abstract

Atrial fibrillation (AF) is the most common cardiac arrhythmia, but little is known about the molecular mechanisms associated with AF arrhythmogenesis. DNA methylation is an important epigenetic mechanism that regulates gene expression and downstream biological processes. We hypothesize that DNA methylation might play an important role in the susceptibility to develop AF. A total of 2,639 participants from the Offspring Cohort of Framingham Heart Study were enrolled in the current study. These participants included 183 participants with prevalent AF and 220 with incident AF during up to 9 years follow up. Genome-wide methylation was profiled using the Illumina Infinium HumanMethylation450 BeadChip on blood-derived DNA collected during the eighth examination cycle (2005–2008). Two CpG sites were significantly associated with prevalent AF, and five CpGs were associated with incident AF after correction for multiple testing (FDR < 0.05). Fourteen previously reported genome-wide significant AF-related SNP were each associated with at least one CpG site; the most significant association was rs6490029 at the CUX2 locus and cg10833066 (P = 9.5 × 10−279). In summary, we performed genome-wide methylation profiling in a community-based cohort and identified seven methylation signatures associated with AF. Our study suggests that DNA methylation might play an important role in AF arrhythmogenesis.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories