Publication: Meta-analysis of rare and common exome chip variants identifies S1PR4 and other loci influencing blood cell traits
Open/View Files
Date
2016
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Pankratz, N., U. M. Schick, Y. Zhou, W. Zhou, T. S. Ahluwalia, M. L. Allende, P. L. Auer, et al. 2016. “Meta-analysis of rare and common exome chip variants identifies S1PR4 and other loci influencing blood cell traits.” Nature genetics 48 (8): 867-876. doi:10.1038/ng.3607. http://dx.doi.org/10.1038/ng.3607.
Research Data
Abstract
Hematologic measures such as hematocrit and white blood cell (WBC) count are heritable and clinically relevant. Erythrocyte and WBC phenotypes were analyzed with Illumina HumanExome BeadChip genotypes in 52,531 individuals (37,775 of European ancestry; 11,589 African Americans; 3,167 Hispanic Americans) from 16 population-based cohorts. We then performed replication analyses of novel discoveries in 18,018 European American women and 5,261 Han Chinese. We identified and replicated four novel erythrocyte trait-locus associations (CEP89, SHROOM3, FADS2, and APOE) and six novel WBC loci for neutrophil count (S1PR4), monocyte count (BTBD8, NLRP12, and IL17RA), eosinophil count (IRF1), and total WBC (MYB). The novel association of a rare missense variant in S1PR4 supports the role of sphingosine-1-phosphate signaling in leukocyte trafficking and circulating neutrophil counts. Loss-of-function experiments of S1pr4 in mouse and zebrafish demonstrated phenotypes consistent with the association observed in humans and altered kinetics of neutrophil recruitment and resolution in response to tissue injury.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service