Publication: The local circular law II: the edge case
Open/View Files
Date
2013
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Nature
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Bourgade, Paul, Horng-Tzer Yau, and Jun Yin. 2013. “The Local Circular Law II: The Edge Case.” Probability Theory and Related Fields 159 (3-4) (July 16): 619–660. doi:10.1007/s00440-013-0516-x.
Research Data
Abstract
In the first part of this article (Bourgade et al. arXiv:1206.1449, 2012), we proved a local version of the circular law up to the finest scale N−1/2+εN−1/2+ε for non-Hermitian random matrices at any point z∈ℂz∈C with ||z|−1|>c||z|−1|>c for any c>0c>0 independent of the size of the matrix. Under the main assumption that the first three moments of the matrix elements match those of a standard Gaussian random variable after proper rescaling, we extend this result to include the edge case |z|−1=o(1)|z|−1=o(1). Without the vanishing third moment assumption, we prove that the circular law is valid near the spectral edge |z|−1=o(1)|z|−1=o(1) up to scale N−1/4+εN−1/4+ε.
Description
Other Available Sources
Keywords
Local circular law, universality
Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service