Publication:
Endopeptidase-Mediated Beta Lactam Tolerance

Thumbnail Image

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Public Library of Science
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Dörr, Tobias, Brigid M. Davis, and Matthew K. Waldor. 2015. “Endopeptidase-Mediated Beta Lactam Tolerance.” PLoS Pathogens 11 (4): e1004850. doi:10.1371/journal.ppat.1004850. http://dx.doi.org/10.1371/journal.ppat.1004850.

Research Data

Abstract

In many bacteria, inhibition of cell wall synthesis leads to cell death and lysis. The pathways and enzymes that mediate cell lysis after exposure to cell wall-acting antibiotics (e.g. beta lactams) are incompletely understood, but the activities of enzymes that degrade the cell wall (‘autolysins’) are thought to be critical. Here, we report that Vibrio cholerae, the cholera pathogen, is tolerant to antibiotics targeting cell wall synthesis. In response to a wide variety of cell wall- acting antibiotics, this pathogen loses its rod shape, indicative of cell wall degradation, and becomes spherical. Genetic analyses revealed that paradoxically, V. cholerae survival via sphere formation required the activity of D,D endopeptidases, enzymes that cleave the cell wall. Other autolysins proved dispensable for this process. Our findings suggest the enzymes that mediate cell wall degradation are critical for determining bacterial cell fate - sphere formation vs. lysis – after treatment with antibiotics that target cell wall synthesis.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories