Publication: Non-Cooperative Location Privacy
Open/View Files
Date
2013
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Freudiger, J., M. H. Manshaei, Jean-Pierre Hubaux, and D. C. Parkes. 2013. “Non-Cooperative Location Privacy.” IEEE Transactions on Dependable and Secure Computing 10 (2) (March): 84–98. doi:10.1109/tdsc.2012.85.
Research Data
Abstract
In mobile networks, authentication is a required primitive for most security protocols. Unfortunately, an adversary can monitor pseudonyms used for authentication to track the location of mobile nodes. A frequently proposed solution to protect location privacy suggests that mobile nodes collectively change their pseudonyms in regions called mix zones. This approach is costly. Self-interested mobile nodes might, thus, decide not to cooperate and jeopardize the achievable location privacy. In this paper, we analyze non-cooperative behavior of mobile nodes by using a game-theoretic model, where each player aims at maximizing its location privacy at a minimum cost. We obtain Nash equilibria in static n-player complete information games. As in practice mobile nodes do not know their opponents' payoffs, we then consider static incomplete information games. We establish that symmetric Bayesian-Nash equilibria exist with simple threshold strategies. By means of numerical results, we predict behavior of selfish mobile nodes. We then investigate dynamic games where players decide to change their pseudonym one after the other and show how this affects strategies at equilibrium. Finally, we design protocols-PseudoGame protocols-based on the results of our analysis and simulate their performance in vehicular network scenarios.
Description
Other Available Sources
Keywords
Security and Privacy Protection, Mobile Computing, Network Protocols
Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service