Publication:
Regulation at a distance of biomolecular interactions using a DNA origami nanoactuator

Thumbnail Image

Open/View Files

Date

2016

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Nature Publishing Group
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Ke, Yonggang, Travis Meyer, William M. Shih, and Gaetan Bellot. 2016. “Regulation at a distance of biomolecular interactions using a DNA origami nanoactuator.” Nature Communications 7 (1): 10935. doi:10.1038/ncomms10935. http://dx.doi.org/10.1038/ncomms10935.

Research Data

Abstract

The creation of nanometre-sized structures that exhibit controllable motions and functions is a critical step towards building nanomachines. Recent developments in the field of DNA nanotechnology have begun to address these goals, demonstrating complex static or dynamic nanostructures made of DNA. Here we have designed and constructed a rhombus-shaped DNA origami ‘nanoactuator' that uses mechanical linkages to copy distance changes induced on one half (‘the driver') to be propagated to the other half (‘the mirror'). By combining this nanoactuator with split enhanced green fluorescent protein (eGFP), we have constructed a DNA–protein hybrid nanostructure that demonstrates tunable fluorescent behaviours via long-range allosteric regulation. In addition, the nanoactuator can be used as a sensor that responds to specific stimuli, including changes in buffer composition and the presence of restriction enzymes or specific nucleic acids.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories