Publication:
U1 snRNP is mislocalized in ALS patient fibroblasts bearing NLS mutations in FUS and is required for motor neuron outgrowth in zebrafish

Thumbnail Image

Date

2015

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Oxford University Press
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Yu, Y., B. Chi, W. Xia, J. Gangopadhyay, T. Yamazaki, M. E. Winkelbauer-Hurt, S. Yin, et al. 2015. “U1 snRNP is mislocalized in ALS patient fibroblasts bearing NLS mutations in FUS and is required for motor neuron outgrowth in zebrafish.” Nucleic Acids Research 43 (6): 3208-3218. doi:10.1093/nar/gkv157. http://dx.doi.org/10.1093/nar/gkv157.

Research Data

Abstract

Mutations in FUS cause amyotrophic lateral sclerosis (ALS), but the molecular pathways leading to neurodegeneration remain obscure. We previously found that U1 snRNP is the most abundant FUS interactor. Here, we report that components of the U1 snRNP core particle (Sm proteins and U1 snRNA), but not the mature U1 snRNP-specific proteins (U1-70K, U1A and U1C), co-mislocalize with FUS to the cytoplasm in ALS patient fibroblasts harboring mutations in the FUS nuclear localization signal (NLS). Similar results were obtained in HeLa cells expressing the ALS-causing FUS R495X NLS mutation, and mislocalization of Sm proteins is RRM-dependent. Moreover, as observed with FUS, knockdown of any of the U1 snRNP-specific proteins results in a dramatic loss of SMN-containing Gems. Significantly, knockdown of U1 snRNP in zebrafish results in motor axon truncations, a phenotype also observed with FUS, SMN and TDP-43 knockdowns. Our observations linking U1 snRNP to ALS patient cells with FUS mutations, SMN-containing Gems, and motor neurons indicate that U1 snRNP is a component of a molecular pathway associated with motor neuron disease. Linking an essential canonical splicing factor (U1 snRNP) to this pathway provides strong new evidence that splicing defects may be involved in pathogenesis and that this pathway is a potential therapeutic target.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories