Publication: Optic-nerve-transmitted eyeshine, a new type of light emission from fish eyes
Open/View Files
Date
2017
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
BioMed Central
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Fritsch, Roland, Jeremy F. P. Ullmann, Pierre-Paul Bitton, Shaun P. Collin, and Nico K. Michiels. 2017. “Optic-nerve-transmitted eyeshine, a new type of light emission from fish eyes.” Frontiers in Zoology 14 (1): 14. doi:10.1186/s12983-017-0198-9. http://dx.doi.org/10.1186/s12983-017-0198-9.
Research Data
Abstract
Background: Most animal eyes feature an opaque pigmented eyecup to assure that light can enter from one direction only. We challenge this dogma by describing a previously unknown form of eyeshine resulting from light that enters the eye through the top of the head and optic nerve, eventually emanating through the pupil as a narrow beam: the Optic-Nerve-Transmitted (ONT) eyeshine. We characterize ONT eyeshine in the triplefin blenny Tripterygion delaisi (Tripterygiidae) in comparison to three other teleost species, using behavioural and anatomical observations, spectrophotometry, histology, and magnetic resonance imaging. The study’s aim is to identify the factors that determine ONT eyeshine occurrence and intensity, and whether these are specifically adapted for that purpose. Results: ONT eyeshine intensity benefits from locally reduced head pigmentation, a thin skull, the gap between eyes and forebrain, the potential light-guiding properties of the optic nerve, and, most importantly, a short distance between the head surface and the optic nerves. Conclusions: The generality of these factors and the lack of specifically adapted features implies that ONT eyeshine is widespread among small fish species. Nevertheless, its intensity varies considerably, depending on the specific combination and varying expression of common anatomical features. We discuss whether ONT eyeshine might affect visual performance, and speculate about possible functions such as predator detection, camouflage, and intraspecific communication. Electronic supplementary material The online version of this article (doi:10.1186/s12983-017-0198-9) contains supplementary material, which is available to authorized users.
Description
Other Available Sources
Keywords
Marine visual ecology, Eye anatomy, Eyeshine, Optic nerve, Light guidance, Tripterygiidae,
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service