Publication:
The Discovery and Characterization of Endosomal Escape Enhancing Compounds to Improve Protein Delivery Efficacy

No Thumbnail Available

Date

2015-07-23

Authors

Published Version

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Li, Margie. 2015. The Discovery and Characterization of Endosomal Escape Enhancing Compounds to Improve Protein Delivery Efficacy. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences.

Research Data

Abstract

The inefficient delivery of proteins into mammalian cells remains a major barrier to realizing the therapeutic potential of many proteins. We and others have previously shown that superpositively charged proteins are efficiently endocytosed and can bring associated proteins and nucleic acids into cells. The vast majority of cargo delivered in this manner, however, remains in endosomes and does not reach the cytosol. In this thesis, I designed and implemented a screen to discover small molecules and peptides that enhance the endosomal escape of proteins fused to superpositively charged GFP (+36 GFP). From a screen of peptides previously reported to disrupt microbial membranes without known mammalian cell toxicity, I discovered a 13-residue peptide, aurein 1.2, that substantially increased non-endosomal protein delivery by up to ~10-fold in cultured cells. Three independent assays for non-endosomal protein delivery confirmed that aurein 1.2 enhances endosomal escape of associated endocytosed protein cargo. Structure-function studies clarified peptide sequence and protein conjugation requirements for endosomal escape activity. When applied to the in vivo delivery of +36 GFP–Cre recombinase fusions into the inner ear of live mice, fusion with aurein 1.2 dramatically increased non-endosomal Cre recombinase delivery potency. Collectively, these findings describe a genetically encodable, endosome escape-enhancing peptide that can greatly increase the cytoplasmic delivery of cationic proteins in vitro and in vivo.

Description

Other Available Sources

Keywords

Chemistry, Biochemistry

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories