Publication:
Individual Microbes Shape Various Parts of the Immune System

No Thumbnail Available

Date

2015-09-22

Published Version

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Sefik, Esen. 2015. Individual Microbes Shape Various Parts of the Immune System. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences.

Research Data

Abstract

The gastrointestinal tract, home to a vast number of bacteria, requires finely-tuned regulatory and effector immune mechanisms to maintain homeostasis and tolerance. In a large-scale screen, we studied the impacts of single microbes on major immune populations, whole intestinal tissue homeostasis and metabolism. Bacteria interacted with the host at multiple levels including cytokine responses, accumulation of various T cells, alterations in composition of mononuclear phagocytes and induction of epithelial cell genes as measured by transcriptome analysis of whole intestinal tissue. Interestingly, taxonomically unrelated bacteria elicited similar immune phenotypes and metabolic effects. A more focused analysis of the induction of regulatory mechanisms revealed a microbiota-dependent, context-specific transcriptional control of Foxp3+ regulatory T cells and of IL17 producing T cells. These facets were both regulated by Rorγ, a transcription factor known for its antagonistic effects on Foxp3. Paradoxically, Rorγ expression induced by bacteria in colonic Foxp3+ regulatory T cells was necessary for function of these cells especially in the context of IL17 and IFNγ-mediated colitis. Overall, this large-scale screen provides a comprehensive study of how individual bacterial species shape many aspects of the host immunity and metabolism, and exemplifies a microbiota-dependent, context-specific mechanism that potentiates function in Foxp3+ regulatory T cells.

Description

Other Available Sources

Keywords

Health Sciences, Immunology

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories