Publication: Asymptotic dynamics of nonlinear Schrödinger equations: Resonance-dominated and dispersion-dominated solutions
Open/View Files
Date
2001
Authors
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley-Blackwell
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Tsai, Tai-Peng, and Horng-Tzer Yau. 2001. “Asymptotic Dynamics of Nonlinear Schrödinger Equations: Resonance-Dominated and Dispersion-Dominated Solutions.” Communications on Pure and Applied Mathematics 55 (2) (November 7): 153–216. Portico. doi:10.1002/cpa.3012.
Research Data
Abstract
We consider a linear Schrödinger equation with a nonlinear perturbation in ℝ3. Assume that the linear Hamiltonian has exactly two bound states and its eigen-values satisfy some resonance condition. We prove that if the initial data is sufficiently small and is near a nonlinear ground state, then the solution approaches to certain nonlinear ground state as the time tends to infinity. Furthermore, the difference between the wave function solving the nonlinear Schrödinger equation and its asymptotic profile can have two different types of decay: The resonance-dominated solutions decay as t−1/2 or the dispersion-dominated solutions decay at least like t−3/2. © 2002 John Wiley & Sons, Inc.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service