Publication: A multiscale statistical mechanical framework integrates biophysical and genomic data to assemble cancer networks
Open/View Files
Date
2014
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
AlQuraishi, Mohammed, Grigoriy Koytiger, Anne Jenney, Gavin MacBeath, and Peter K. Sorger. 2014. “A multiscale statistical mechanical framework integrates biophysical and genomic data to assemble cancer networks.” Nature genetics 46 (12): 1363-1371. doi:10.1038/ng.3138. http://dx.doi.org/10.1038/ng.3138.
Research Data
Abstract
Functional interpretation of genomic variation is critical to understanding human disease but it remains difficult to predict the effects of specific mutations on protein interaction networks and the phenotypes they regulate. We describe an analytical framework based on multiscale statistical mechanics that integrates genomic and biophysical data to model the human SH2-phosphoprotein network in normal and cancer cells. We apply our approach to data in The Cancer Genome Atlas (TCGA) and test model predictions experimentally. We find that mutations in phosphoproteins often create new interactions but that mutations in SH2 domains result almost exclusively in loss of interactions. Some of these mutations eliminate all interactions but many cause more selective loss, thereby rewiring specific edges in highly connected subnetworks. Moreover, idiosyncratic mutations appear to be as functionally consequential as recurrent mutations. By synthesizing genomic, structural, and biochemical data our framework represents a new approach to the interpretation of genetic variation.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service