Publication: Rare-Earth separation using bacteria
Date
2016
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
American Chemical Society (ACS)
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Bonificio, William D., and David R. Clarke. 2016. Rare-Earth separation using bacteria. Environmental Science and Technology Letters 3, no. 4: 180-184. doi:10.1021/acs.estlett.6b00064.
Research Data
Abstract
The rare-earth elements are critical to many green energy technologies but are difficult to separate from one another because of their chemical similarity. We demonstrate an alternative, biogenic method based on the adsorption of lanthanide to the bacterium Roseobacter sp. AzwK-3b, immobilized on an assay filter, followed by subsequent desorption as a function of pH. The elution desorption data suggest that the basicity of the individual lanthanides is important in determining their desorption behavior. It is found that via preprotonation of the bacteria it is possible to concentrate a solution of equal concentrations of each lanthanide to nearly 50% of the three heaviest lanthanides (Tm, Lu, and Yb) in just two passes. This surpasses existing industrial practice. The findings suggest that there is an opportunity to harness the diversity of bacterial surface chemistry to separate and recover technologically important rare-earth metals in an environmentally benign manner.
Description
Other Available Sources
Keywords
Terms of Use
Metadata Only