Publication:
Density-wave instabilities of fractionalized Fermi liquids

Thumbnail Image

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society (APS)
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Chowdhury, Debanjan, and Subir Sachdev. 2014. “Density-Wave Instabilities of Fractionalized Fermi Liquids.” Phys. Rev. B 90 (24) (December). doi:10.1103/physrevb.90.245136.

Research Data

Abstract

Recent experiments in the underdoped regime of the hole-doped cuprates have found evidence for an incommensurate charge density-wave state. We present an analysis of the charge ordering instabilities in a metal with antiferromagnetic correlations, where the electronic excitations are coupled to the fractionalized excitations of a quantum fluctuating antiferromagnet on the square lattice. The resulting charge density-wave state emerging out of such a fractionalized Fermi liquid (FL*) has wave vectors of the form (±Q0,0),(0,±Q0), with a predominantly d-form factor, in agreement with experiments on a number of different families of the cuprates. In contrast, as previously shown, the charge density-wave instability of a nearly antiferromagnetic metal with a large Fermi surface, interacting via short-range interactions, has wave vectors of the type (±Q0,±Q0). Our results show that the observed charge density-wave appears as a low-energy instability of a fractionalized metallic state linked to the proximity to an antiferromagnetic insulator, and the pseudogap regime can be described by such a metal at least over intermediate length and energy scales.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories