Publication:
Protein Biophysics Explains Why Highly Abundant Proteins Evolve Slowly

Thumbnail Image

Date

2012

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier BV
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Serohijos, Adrian W.R., Zilvinas Rimas, and Eugene I. Shakhnovich. 2012. “Protein Biophysics Explains Why Highly Abundant Proteins Evolve Slowly.” Cell Reports 2 (2) (August): 249–256. doi:10.1016/j.celrep.2012.06.022.

Research Data

Abstract

The consistent observation across all kingdoms of life that highly abundant proteins evolve slowly demonstrates that cellular abundance is a key determinant of protein evolutionary rate. However, other empirical findings, such as the broad distribution of evolutionary rates, suggest that additional variables determine the rate of protein evolution. Here, we report that under the global selection against the cytotoxic effects of misfolded proteins, folding stability (ΔG), simultaneous with abundance, is a causal variable of evolutionary rate. Using both theoretical analysis and multiscale simulations, we demonstrate that the anticorrelation between the pre-mutation ΔG and the arising mutational effect (ΔΔG), purely biophysical in origin, is a necessary requirement for abundance–evolutionary rate covariation. Additionally, we predict and demonstrate in bacteria that the strength of abundance–evolutionary rate correlation depends on the divergence time separating reference genomes. Altogether, these results highlight the intrinsic role of protein biophysics in the emerging universal patterns of molecular evolution.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories