Publication: Thermodynamics and Kinetics of the Hairpin Ribozyme from Atomistic Folding/Unfolding Simulations
Open/View Files
Date
2011
Authors
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier BV
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Nivón, Lucas G., and Eugene I. Shakhnovich. 2011. “Thermodynamics and Kinetics of the Hairpin Ribozyme from Atomistic Folding/Unfolding Simulations.” Journal of Molecular Biology 411 (5) (September): 1128–1144. doi:10.1016/j.jmb.2011.06.042.
Research Data
Abstract
We report a set of atomistic folding/unfolding simulations for the hairpin ribozyme using a monte carlo algorithm. The hairpin ribozyme folds in solution and catalyzes self-cleavage or ligation via a specific two-domain structure. The minimal active ribozyme has been studied extensively, showing stabilization of the active structure by cations and dynamic motion of the active structure. Here we introduce a simple model of tertiary structure formation that leads to a phase diagram for the RNA as a function of temperature and tertiary structure strength. We then employ this model to capture many folding/unfolding events and to examine the transition state ensemble (TSE) of the RNA during folding to its active “docked” conformation. The TSE is compact but with few tertiary interactions formed, in agreement with single-molecule dynamics experiments. To compare with experimental kinetic parameters we introduce a novel method to benchmark monte carlo kinetic parameters to docking/undocking rates collected over many single molecular trajectories. We find that topology alone, as encoded in a biased potential which discriminates between secondary and tertiary interactions, is sufficient to predict the thermodynamic behavior and kinetic folding pathway of the hairpin ribozyme. This method should be useful in predicting folding transition states for many natural or man-made RNA tertiary structures.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service