Publication: Sources of Error in Mammalian Genetic Screens
Open/View Files
Date
2016
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Genetics Society of America
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Sack, Laura Magill, Teresa Davoli, Qikai Xu, Mamie Z. Li, and Stephen J. Elledge. 2016. “Sources of Error in Mammalian Genetic Screens.” G3: Genes|Genomes|Genetics 6 (9): 2781-2790. doi:10.1534/g3.116.030973. http://dx.doi.org/10.1534/g3.116.030973.
Research Data
Abstract
Genetic screens are invaluable tools for dissection of biological phenomena. Optimization of such screens to enhance discovery of candidate genes and minimize false positives is thus a critical aim. Here, we report several sources of error common to pooled genetic screening techniques used in mammalian cell culture systems, and demonstrate methods to eliminate these errors. We find that reverse transcriptase-mediated recombination during retroviral replication can lead to uncoupling of molecular tags, such as DNA barcodes (BCs), from their associated library elements, leading to chimeric proviral genomes in which BCs are paired to incorrect ORFs, shRNAs, etc. This effect depends on the length of homologous sequence between unique elements, and can be minimized with careful vector design. Furthermore, we report that residual plasmid DNA from viral packaging procedures can contaminate transduced cells. These plasmids serve as additional copies of the PCR template during library amplification, resulting in substantial inaccuracies in measurement of initial reference populations for screen normalization. The overabundance of template in some samples causes an imbalance between PCR cycles of contaminated and uncontaminated samples, which results in a systematic artifactual depletion of GC-rich library elements. Elimination of contaminating plasmid DNA using the bacterial endonuclease Benzonase can restore faithful measurements of template abundance and minimize GC bias.
Description
Other Available Sources
Keywords
lentivirus, genetic libraries, pooled shRNA or CRISPR screens, barcode screening, GC bias
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service