Publication: Investigating the Interplay between Sister Chromatid Cohesion and Homolog Pairing in Drosophila Nuclei
Open/View Files
Date
2016
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Public Library of Science
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Senaratne, T. Niroshini, Eric F. Joyce, Son C. Nguyen, and C.-ting Wu. 2016. “Investigating the Interplay between Sister Chromatid Cohesion and Homolog Pairing in Drosophila Nuclei.” PLoS Genetics 12 (8): e1006169. doi:10.1371/journal.pgen.1006169. http://dx.doi.org/10.1371/journal.pgen.1006169.
Research Data
Abstract
Following DNA replication, sister chromatids must stay connected for the remainder of the cell cycle in order to ensure accurate segregation in the subsequent cell division. This important function involves an evolutionarily conserved protein complex known as cohesin; any loss of cohesin causes premature sister chromatid separation in mitosis. Here, we examined the role of cohesin in sister chromatid cohesion prior to mitosis, using fluorescence in situ hybridization (FISH) to assay the alignment of sister chromatids in interphase Drosophila cells. Surprisingly, we found that sister chromatid cohesion can be maintained in G2 with little to no cohesin. This capacity to maintain cohesion is widespread in Drosophila, unlike in other systems where a reduced dependence on cohesin for sister chromatid segregation has been observed only at specific chromosomal regions, such as the rDNA locus in budding yeast. Additionally, we show that condensin II antagonizes the alignment of sister chromatids in interphase, supporting a model wherein cohesin and condensin II oppose each other’s functions in the alignment of sister chromatids. Finally, because the maternal and paternal homologs are paired in the somatic cells of Drosophila, and because condensin II has been shown to antagonize this pairing, we consider the possibility that condensin II-regulated mechanisms for aligning homologous chromosomes may also contribute to sister chromatid cohesion.
Description
Other Available Sources
Keywords
Biology and Life Sciences, Cell Biology, Chromosome Biology, Chromosomes, Chromatids, Biology and life sciences, Genetics, Epigenetics, RNA interference, Gene expression, Genetic interference, Biochemistry, Nucleic acids, RNA, Model Organisms, Animal Models, Drosophila Melanogaster, Organisms, Animals, Invertebrates, Arthropoda, Insects, Drosophila, Cell Processes, Cell Cycle and Cell Division, Metaphase, Cytogenetic Techniques, Fluorescent in Situ Hybridization, Molecular Biology, Molecular Biology Techniques, Molecular Probe Techniques, Probe Hybridization, Mitosis, Genetic Loci
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service