Publication: Heme oxygenase-1-mediated neuroprotection in subarachnoid hemorrhage via intracerebroventricular deferoxamine
Open/View Files
Date
2016
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
BioMed Central
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
LeBlanc, Robert H., Ruiya Chen, Magdy H. Selim, and Khalid A. Hanafy. 2016. “Heme oxygenase-1-mediated neuroprotection in subarachnoid hemorrhage via intracerebroventricular deferoxamine.” Journal of Neuroinflammation 13 (1): 244. doi:10.1186/s12974-016-0709-1. http://dx.doi.org/10.1186/s12974-016-0709-1.
Research Data
Abstract
Background: Subarachnoid hemorrhage (SAH) is a devastating disease that affects over 30,000 Americans per year. Previous animal studies have explored the therapeutic effects of deferoxamine (DFX) via its iron-chelating properties after SAH, but none have assessed the necessity of microglial/macrophage heme oxygenase-1 (HO-1 or Hmox1) in DFX neuroprotection, nor has the efficacy of an intracerebroventricular (ICV) administration route been fully examined. We explored the therapeutic efficacy of systemic and ICV DFX in a SAH mouse model and its effect on microglial/macrophage HO-1. Methods: Wild-type (WT) mice were split into the following treatment groups: SAH sham + vehicle, SAH + vehicle, SAH + intraperitoneal (IP) DFX, and SAH + ICV DFX. For each experimental group, neuronal damage, cognitive outcome, vasospasm, cerebral and hematogenous myeloid cell populations, cerebral IL-6 concentration, and mitochondrial superoxide anion production were measured. HO-1 co-localization to microglia was measured using confocal images. Trans-wells with WT or HO-1−/− microglia and hippocampal neurons were treated with vehicle, red blood cells (RBCs), or RBCs with DFX; neuronal damage, TNF-α concentration, and microglial HO-1 expression were measured. HO-1 conditional knockouts were used to study myeloid, neuronal, and astrocyte HO-1 involvement in DFX-induced neuroprotection and cognitive recovery. Results: DFX treatment after SAH decreased cortical damage and improved cognitive outcome after SAH yet had no effect on vasospasm; ICV DFX was most neuroprotective. ICV DFX treatment after SAH decreased cerebral IL-6 concentration and trended towards decreased mitochondrial superoxide anion production. ICV DFX treatment after SAH effected an increase in HO-1 co-localization to microglia. DFX treatment of WT microglia with RBCs in the trans-wells showed decreased neuronal damage; this effect was abolished in HO-1−/− microglia. ICV DFX after SAH decreased neuronal damage and improved cognition in Hmox1fl/fl control and NesCre:Hmox1fl/fl mice, but not LyzMCre:Hmox1fl/fl mice. Conclusions: DFX neuroprotection is independent of vasospasm. ICV DFX treatment provides superior neuroprotection in a mouse model of SAH. Mechanisms of DFX neuroprotection after SAH may involve microglial/macrophage HO-1 expression. Monitoring patient HO-1 expression during DFX treatment for hemorrhagic stroke may help clinicians identify patients that are more likely to respond to treatment. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0709-1) contains supplementary material, which is available to authorized users.
Description
Other Available Sources
Keywords
Deferoxamine, Heme oxygenase, Immunology, Intracerebroventricular, Microglia, Subarachnoid hemorrhage, Vasospasm-independent
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service