Publication: Origins of Gas Giant Compositions: The Role of Disk Location and Dynamics
No Thumbnail Available
Date
2016-05-04
Authors
Published Version
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Piso, Ana-Maria Adriana. 2016. Origins of Gas Giant Compositions: The Role of Disk Location and Dynamics. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences.
Research Data
Abstract
The composition of planets is determined by and tightly linked to the composition of the protoplanetary disk in which they form. In the first part of my thesis, I study giant planet formation through core accretion. I show how the minimum core mass required to form a giant planet during the lifetime of the protoplanetary disk depends on the location in the disk, the equation of state of the nebular gas and dust opacity. This minimum applies when planetesimal accretion does not substantially heat the core's atmosphere. The minimum core mass decreases with semimajor axis, and may be significantly lower than the typically quoted value of 10 Earth masses, thus challenging previous studies that core accretion cannot operate in the outer disk. In the second part, I explore how the composition and evolution of protoplanetary disks may affect the formation and chemical composition of giant planets. Volatile snowlines are highly important in the planet formation process. I thus show how the snowline locations of the main carbon, oxygen and nitrogen carriers, as well as the C/N/O ratios, are affected by disk dynamics and ice morphology. Compared to a static disk, disk dynamics and ice morphology combined may change the CO and N_2 snowline locations by a factor of 7. Moreover, the gas-phase N/O ratio is highly enhanced throughout most of the disk, meaning that wide-separation giants should have an excess of nitrogen in their atmospheres which may be used to trace their origins. The large range of possible CO and N_2 snowline locations, and hence of regions with highly enhanced N/O ratios, implies that snowline observations at various stages of planet formation are crucial in order to use C/N/O ratios as beacons for planet formation zones.
Description
Other Available Sources
Keywords
Physics, Astronomy and Astrophysics
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service