Publication:
A visual circuit uses complementary mechanisms to support transient and sustained pupil constriction

Thumbnail Image

Open/View Files

Date

2016

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

eLife Sciences Publications, Ltd
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Keenan, William Thomas, Alan C Rupp, Rachel A Ross, Preethi Somasundaram, Suja Hiriyanna, Zhijian Wu, Tudor C Badea, Phyllis R Robinson, Bradford B Lowell, and Samer S Hattar. 2016. “A visual circuit uses complementary mechanisms to support transient and sustained pupil constriction.” eLife 5 (1): e15392. doi:10.7554/eLife.15392. http://dx.doi.org/10.7554/eLife.15392.

Research Data

Abstract

Rapid and stable control of pupil size in response to light is critical for vision, but the neural coding mechanisms remain unclear. Here, we investigated the neural basis of pupil control by monitoring pupil size across time while manipulating each photoreceptor input or neurotransmitter output of intrinsically photosensitive retinal ganglion cells (ipRGCs), a critical relay in the control of pupil size. We show that transient and sustained pupil responses are mediated by distinct photoreceptors and neurotransmitters. Transient responses utilize input from rod photoreceptors and output by the classical neurotransmitter glutamate, but adapt within minutes. In contrast, sustained responses are dominated by non-conventional signaling mechanisms: melanopsin phototransduction in ipRGCs and output by the neuropeptide PACAP, which provide stable pupil maintenance across the day. These results highlight a temporal switch in the coding mechanisms of a neural circuit to support proper behavioral dynamics. DOI: http://dx.doi.org/10.7554/eLife.15392.001

Description

Keywords

retinal circuitry, neurotransmitters, ipRGC, melanopsin, vision, neuropeptides, Mouse

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories