Publication:
Dorsal and anal fin function in bluegill sunfish Lepomis macrochirus: three-dimensional kinematics during propulsion and maneuvering

Thumbnail Image

Date

2005

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Company of Biologists
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Standen, E. M. 2005. Dorsal and Anal Fin Function in Bluegill Sunfish Lepomis Macrochirus: Three-Dimensional Kinematics During Propulsion and Maneuvering. Journal of Experimental Biology 208, no. 14: 2753–2763. doi:10.1242/jeb.01706.

Research Data

Abstract

Dorsal and anal fins are median fins located above and below the centre of mass of fishes, each having a moment arm relative to the longitudinal axis. Understanding the kinematics of dorsal and anal fins may elucidate how these fins are used in concert to maintain and change fish body position and yet little is known about the functions of these fins. Using three synchronized high-speed cameras (500·frames·s–1) we studied the three-dimensional kinematics of dorsal and anal fins during steady swimming (0.5–2.5·TL·s–1, where TL=total length) and during slow speed maneuvers (0.5·TL·s–1). By digitizing points along every other fin ray in the soft-rayed portion of the fins we were able to determine not only the movement of the fin surface but also the curvature of individual fin rays and the resulting fin surface shape. We found that dorsal and anal fins begin oscillating, in phase, at steady swimming speeds above 1.0·TL·s–1 and that maximum lateral displacement of the trailing edge of the fins as well as fin area increase with increasing steady swimming speed. Differences in area, lateral displacement and moment arm between the dorsal and anal fin suggest that dorsal and anal fins produce balancing torques during steady swimming. During maneuvers, fin area is maximized and mean lateral excursion of both fins is greater than during steady swimming, with large variation among maneuvers. Fin surface shape changes dramatically during maneuvers. At any given point in time the spanwise (base to tip) curvature along fin rays can differ between adjacent rays, suggesting that fish have a high level of control over fin surface shape. Also, during maneuvers the whole surface of both dorsal and anal fins can be bent without individual fin rays exhibiting significant curvature.

Description

Other Available Sources

Keywords

swimming, maneuvering, locomotion, dorsal fin, anal fin, kinematics, stability, bluegill sunfish, Lepomis macrochirus

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories