Publication: Activation of raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output channels
Open/View Files
Date
2015
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Kapoor, Vikrant, Allison Provost, Prateek Agarwal, and Venkatesh N. Murthy. 2015. “Activation of raphe nuclei triggers rapid and distinct effects on parallel olfactory bulb output channels.” Nature neuroscience 19 (2): 271-282. doi:10.1038/nn.4219. http://dx.doi.org/10.1038/nn.4219.
Research Data
Abstract
The serotonergic raphe nuclei are involved in regulating brain states over time-scales of minutes and hours. We examined more rapid effects of serotonergic activation on two classes of principal neurons in the mouse olfactory bulb, mitral and tufted cells, which send olfactory information to distinct targets. Brief stimulation of the raphe nuclei led to excitation of tufted cells at rest and potentiation of their odor responses. While mitral cells at rest were also excited by raphe activation, their odor responses were bidirectionally modulated, leading to improved pattern separation of odors. In vitro whole-cell recordings revealed that specific optogenetic activation of raphe axons affected bulbar neurons through dual release of serotonin and glutamate. Therefore, the raphe nuclei, in addition to their role in neuromodulation of brain states, are also involved in fast, sub-second top-down modulation, similar to cortical feedback. This modulation can selectively and differentially sensitize or decorrelate distinct output channels.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service