Publication:
Mechanical Model of Globular Transition in Polymers

Thumbnail Image

Date

2014

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley-Blackwell
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Tricard, Simon, Robert F. Shepherd, Claudiu A. Stan, Phillip W. Snyder, Rebecca Cademartiri, Danny Zhu, Igor S. Aranson, Eugene I. Shakhnovich, and George M. Whitesides. 2014. “Mechanical Model of Globular Transition in Polymers.” ChemPlusChem 80 (1) (July 30): 37–41. Portico. doi:10.1002/cplu.201402203.

Research Data

Abstract

In complex, multicomponent systems, polymers often undergo phase transitions between distinct conformations. This paper reports a millimeter-scale granular model of coil-to-globule transitions: one “polymer” chain—a cylinders-on-a-string “pearl necklace”—and many spheres, all shaken on a horizontal surface. It is possible to describe the behavior of this granular system by using formalisms generally used in statistical physics of polymers. Two sets of experiments allowed the observation of first- and second-order coil-to-globule transitions. The model shows that the competition between long- and short-range interactions leads to a first-order transition. Well-designed granular system represents another kind of approach to the study of polymer phase transitions and might inspire future designs of polymer-like mesoscale systems.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories