Publication:
Hybrid lipid–polymer nanoparticles for sustained siRNA delivery and gene silencing

Thumbnail Image

Date

2014

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier BV
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Shi, Jinjun, Yingjie Xu, Xiaoyang Xu, Xi Zhu, Eric Pridgen, Jun Wu, Alexander R. Votruba, Archana Swami, Bruce R. Zetter, and Omid C. Farokhzad. 2014. “Hybrid Lipid–polymer Nanoparticles for Sustained siRNA Delivery and Gene Silencing.” Nanomedicine: Nanotechnology, Biology and Medicine 10 (5) (July): e897–e900. doi:10.1016/j.nano.2014.03.006.

Research Data

Abstract

The development of controlled-release nanoparticle (NP) technologies has great potential to further improve the therapeutic efficacy of RNA interference (RNAi), by prolonging the release of small interfering RNA (siRNA) for sustained, long-term gene silencing. Herein, we present a NP platform with sustained siRNA-release properties, which can be self-assembled using biodegradable and biocompatible polymers and lipids. The hybrid lipid-polymer NPs showed excellent silencing efficacy, and the temporal release of siRNA from the NPs continued for over one month. When tested on luciferase-expressed HeLa cells and A549 lung carcinoma cells after short-term transfection, the siRNA NPs showed greater sustained silencing activity than lipofectamine 2000-siRNA complexes. More importantly, the NP-mediated sustained silencing of prohibitin 1 (PHB1) generates more effective tumor cell growth inhibition in vitro and in vivo than the lipofectamine complexes. We expect that this sustained-release siRNA NP platform could be of interest in both fundamental biological studies and clinical applications.

Description

Keywords

Lipid-polymer nanoparticle

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories