Publication:
Claudin-2-dependent paracellular channels are dynamically gated

Thumbnail Image

Open/View Files

Date

2015

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

eLife Sciences Publications, Ltd
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Weber, Christopher R, Guo Hua Liang, Yitang Wang, Sudipto Das, Le Shen, Alan S L Yu, Deborah J Nelson, and Jerrold R Turner. 2015. “Claudin-2-dependent paracellular channels are dynamically gated.” eLife 4 (1): e09906. doi:10.7554/eLife.09906. http://dx.doi.org/10.7554/eLife.09906.

Research Data

Abstract

Intercellular tight junctions form selectively permeable barriers that seal the paracellular space. Trans-tight junction flux has been measured across large epithelial surfaces, but conductance across individual channels has never been measured. We report a novel trans-tight junction patch clamp technique that detects flux across individual claudin-2 channels within the tight junction of cultured canine renal tubule or human intestinal epithelial monolayers. In both cells, claudin-2 channels display conductances of ~90 pS. The channels are gated, strictly dependent on claudin-2 expression, and display size- and charge-selectivity typical of claudin-2. Kinetic analyses indicate one open and two distinct closed states. Conductance is symmetrical and reversible, characteristic of a passive, paracellular process, and blocked by reduced temperature or site-directed mutagenesis and chemical derivatization of the claudin-2 pore. We conclude that claudin-2 forms gated paracellular channels and speculate that modulation of tight junction channel gating kinetics may be an unappreciated mechanism of barrier regulation. DOI: http://dx.doi.org/10.7554/eLife.09906.001

Description

Keywords

tight junction, epithelium, ion channel, patch clamp, barrier function, intestine, Human, Other

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories