Publication:
Search for single top-quark production via flavour-changing neutral currents at 8 TeV with the ATLAS detector

Thumbnail Image

Open/View Files

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Berlin Heidelberg
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Aad, G., B. Abbott, J. Abdallah, O. Abdinov, R. Aben, M. Abolins, O. S. AbouZeid, et al. 2016. “Search for single top-quark production via flavour-changing neutral currents at 8 TeV with the ATLAS detector.” The European Physical Journal. C, Particles and Fields 76 (1): 55. doi:10.1140/epjc/s10052-016-3876-4. http://dx.doi.org/10.1140/epjc/s10052-016-3876-4.

Research Data

Abstract

A search for single top-quark production via flavour-changing neutral current processes from gluon plus up- or charm-quark initial states in proton–proton collisions at the LHC is presented. Data collected with the ATLAS detector in 2012 at a centre-of-mass energy of 8 TeV and corresponding to an integrated luminosity of 20.3 fb\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document}-1 are used. Candidate events for a top quark decaying into a lepton, a neutrino and a jet are selected and classified into signal- and background-like candidates using a neural network. No signal is observed and an upper limit on the production cross-section multiplied by the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t \rightarrow Wb$$\end{document}t→Wb branching fraction is set. The observed 95 % CL limit is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{qg \rightarrow t} {\,\times \,} \mathcal {B}(t \rightarrow Wb)< {3.4}\,\mathrm{pb}$$\end{document}σqg→t×B(t→Wb)<3.4pb and the expected 95 % CL limit is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{qg \rightarrow t} \times \mathcal {B}(t \rightarrow Wb)< {2.9}\,\mathrm{pb}$$\end{document}σqg→t×B(t→Wb)<2.9pb. The observed limit can be interpreted as upper limits on the coupling constants of the flavour-changing neutral current interactions divided by the scale of new physics \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa _{ugt}/\Lambda < 5.8 \times 10^{-3}\, \mathrm{TeV}^{-1}$$\end{document}κugt/Λ<5.8×10-3TeV-1 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa _{cgt}/\Lambda < 13 \times 10^{-3}\, \mathrm{TeV}$$\end{document}κcgt/Λ<13×10-3TeV and on the branching fractions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}(t \rightarrow ug) < {4.0 \times 10^{-5}}$$\end{document}B(t→ug)<4.0×10-5 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {B}(t \rightarrow cg) < {20 \times 10^{-5}}$$\end{document}B(t→cg)<20×10-5.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories