Publication: Using the discrete dipole approximation and holographic microscopy to measure rotational dynamics of non-spherical colloidal particles
Open/View Files
Date
2014
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier BV
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Wang, Anna, Thomas G. Dimiduk, Jerome Fung, Sepideh Razavi, Ilona Kretzschmar, Kundan Chaudhary, and Vinothan N. Manoharan. 2014. “Using the Discrete Dipole Approximation and Holographic Microscopy to Measure Rotational Dynamics of Non-Spherical Colloidal Particles.” Journal of Quantitative Spectroscopy and Radiative Transfer 146 (October): 499–509. doi:10.1016/j.jqsrt.2013.12.019.
Research Data
Abstract
We present a new, high-speed technique to track the three-dimensional translation and rotation of non-spherical colloidal particles. We capture digital holograms of micrometer-scale silica rods and sub-micrometer-scale Janus particles freely diffusing in water, and then fit numerical scattering models based on the discrete dipole approximation to the measured holograms. This inverse-scattering approach allows us to extract the position and orientation of the particles as a function of time, along with static parameters including the size, shape, and refractive index. The best-fit sizes and refractive indices of both particles agree well with expected values. The technique is able to track the center of mass of the rod to a precision of 35 nm and its orientation to a precision of 1.5°, comparable to or better than the precision of other 3D diffusion measurements on non-spherical particles. Furthermore, the measured translational and rotational diffusion coefficients for the silica rods agree with hydrodynamic predictions for a spherocylinder to within 0.3%. We also show that although the Janus particles have only weak optical asymmetry, the technique can track their 2D translation and azimuthal rotation over a depth of field of several micrometers, yielding independent measurements of the effective hydrodynamic radius that agree to within 0.2%. The internal and external consistency of these measurements validate the technique. Because the discrete dipole approximation can model scattering from arbitrarily shaped particles, our technique could be used in a range of applications, including particle tracking, microrheology, and fundamental studies of colloidal self-assembly or microbial motion.
Description
Other Available Sources
Keywords
light scattering, digital holography, colloids, discrete dipole approximation, non-spherical, diffusion
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service