Publication:
Dependent type theory of stateful higher-order functions

Thumbnail Image

Date

2005

Published Version

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Nanevski, Aleksandar and Greg Morrisett. 2005. Dependent type theory of stateful higher-order functions. Harvard Computer Science Group Technical Report TR-24-05.

Research Data

Abstract

In this paper we investigate a logic for reasoning about programs with higher-order functions and effectful features like non-termination and state with aliasing. We propose a dependent type theory HTT (short for Hoare Type Theory), where types serve as program specifications. In case of effectful programs, the type of Hoare triples {P}x:A{Q} specifies the precondition P, the type of the return result A, and the postcondition Q. By Curry-Howard isomorphism, a dependent type theory may be viewed as a functional programming language. From this perspective, the type of Hoare triples is a monad, and HTT is a monadic language, whose pure fragment consists of higher-order functions, while the effectful fragment is a full Turing-complete imperative language with conditionals, loops, recursion and commands for stateful operations like allocation, lookup and mutation of location content.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories