Publication: Consistent scenarios for cosmic-ray excesses from Sommerfeld-enhanced dark matter annihilation
Open/View Files
Date
2011
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
IOP Publishing
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Finkbeiner, Douglas P, Lisa Goodenough, Tracy R Slatyer, Mark Vogelsberger, and Neal Weiner. 2011. “Consistent Scenarios for Cosmic-Ray Excesses from Sommerfeld-Enhanced Dark Matter Annihilation.” Journal of Cosmology and Astroparticle Physics 2011 (05) (May 3): 002–002. doi:10.1088/1475-7516/2011/05/002.
Research Data
Abstract
Anomalies in direct and indirect detection have motivated models of dark matter consisting of a multiplet of nearly-degenerate states, coupled by a new GeV-scale interaction. We perform a careful analysis of the thermal freezeout of dark matter annihilation in such a scenario. We compute the range of "boost factors" arising from Sommerfeld enhancement in the local halo for models which produce the correct relic density, and show the effect of including constraints on the saturated enhancement from the cosmic microwave background (CMB). We find that boost factors from Sommerfeld enhancement of up to ~800 are possible in the local halo. When the CMB bounds on the saturated enhancement are applied, the maximal boost factor is reduced to ~400 for 1-2 TeV dark matter and sub-GeV force carriers, but remains large enough to explain the observed Fermi and PAMELA electronic signals. We describe regions in the DM mass-boost factor plane where the cosmic ray data is well fit for a range of final states, and show that Sommerfeld enhancement alone is enough to provide the large annihilation cross sections required to fit the data, although for light mediator masses (less than ~200 MeV) there is tension with the CMB constraints in the absence of astrophysical boost factors from substructure. Additionally, we consider the circumstances under which WIMPonium formation is relevant and find for heavy WIMPs (greater than ~2 TeV) and soft-spectrum annihilation channels it can be an important consideration; we find regions with dark matter mass greater than 2.8 TeV that are consistent with the CMB bounds and have ~600-700 present-day boost factors.
Description
Other Available Sources
Keywords
dark matter theory, dark matter experiments
Terms of Use
This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service