Publication:
Transcriptome-scale RNase-footprinting of RNA-protein complexes

Thumbnail Image

Date

2015

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Ji, Zhe, Ruisheng Song, Hailiang Huang, Aviv Regev, and Kevin Struhl. 2015. “Transcriptome-scale RNase-footprinting of RNA-protein complexes.” Nature biotechnology 34 (4): 410-413. doi:10.1038/nbt.3441. http://dx.doi.org/10.1038/nbt.3441.

Research Data

Abstract

Ribosome profiling is widely used to study translation in vivo, but not all sequence reads correspond to ribosome-protected RNA. Here, we develop Rfoot, a computational pipeline that analyzes ribosomal profiling data and identifies native, non-ribosomal RNA-protein complexes in the same sample.. We use Rfoot to precisely map RNase-protected regions within small nucleolar RNAs, spliceosomal RNAs, microRNAs, tRNAs, long noncoding (lnc) RNAs, and 3’ˊ untranslated regions of mRNAs in human cells. We show that RNAs of the same class can show differential complex association. Although only a subset of lncRNAs show RNase footprints, many of these have multiple footprints, and the protected regions are evolutionarily conserved, suggestive of biological functions.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories