Publication:
Clinical significance of T cell metabolic reprogramming in cancer

Thumbnail Image

Open/View Files

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Berlin Heidelberg
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Herbel, Christoph, Nikolaos Patsoukis, Kankana Bardhan, Pankaj Seth, Jessica D. Weaver, and Vassiliki A. Boussiotis. 2016. “Clinical significance of T cell metabolic reprogramming in cancer.” Clinical and Translational Medicine 5 (1): 29. doi:10.1186/s40169-016-0110-9. http://dx.doi.org/10.1186/s40169-016-0110-9.

Research Data

Abstract

Conversion of normal cells to cancer is accompanied with changes in their metabolism. During this conversion, cell metabolism undergoes a shift from oxidative phosphorylation to aerobic glycolysis, also known as Warburg effect, which is a hallmark for cancer cell metabolism. In cancer cells, glycolysis functions in parallel with the TCA cycle and other metabolic pathways to enhance biosynthetic processes and thus support proliferation and growth. Similar metabolic features are observed in T cells during activation but, in contrast to cancer, metabolic transitions in T cells are part of a physiological process. Currently, there is intense interest in understanding the cause and effect relationship between metabolic reprogramming and T cell differentiation. After the recent success of cancer immunotherapy, the crosstalk between immune system and cancer has come to the forefront of clinical and basic research. One of the key goals is to delineate how metabolic alterations of cancer influence metabolism-regulated function and differentiation of tumor resident T cells and how such effects might be altered by immunotherapy. Here, we review the unique metabolic features of cancer, the implications of cancer metabolism on T cell metabolic reprogramming during antigen encounters, and the translational prospective of harnessing metabolism in cancer and T cells for cancer therapy.

Description

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories