Publication:
The mechanical scaling of coasting in zebrafish (Danio rerio)

Thumbnail Image

Date

2005

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Company of Biologists
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

McHenry, M. J. 2005. The Mechanical Scaling of Coasting in Zebrahttp://dx.doi.org/10.1242/jeb.01642.

Research Data

Abstract

Many fish species span two or three orders of magnitude in length during the growth from larvae to adults, and this change may have dramatic consequences for locomotor performance. We measured how the performance of coasting changes over the life history of zebrafish (Danio rerio) and examined the scaling of mechanics underlying this change. Adult zebrafish coast disproportionately further and faster and maintain their speed for a longer duration than do larvae and juveniles. Measurements of drag on tethered dead fish suggest that adult fish operate in an inertial regime by coasting at relatively high Reynolds numbers (Re>1000), and in vivo drag measurements showed adults to operate with a drag coefficient (Cinert 0.024) that was consistent with previously published estimates. However, drag scaled differently at lower Re values than those assumed in previous studies. We found a viscous regime at Re<300, which corresponds to the routine coasting of larvae and juveniles. Despite these changes in hydrodynamics over growth, a mathematical model of coasting mechanics suggests that the disproportionately longer coasting of adults is caused primarily by their large body mass and high speed at the beginning of coasting. We therefore propose that changes in coasting performance with growth are dictated primarily by the scaling of momentum rather than resulting from hydrodynamic changes. These results provide an opportunity for new interpretations of function in the growth and evolution of fish.

Description

Other Available Sources

Keywords

gliding, locomotion, swimming, fish

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories