Publication: Particulate Air Pollution Exposure and Expression of Viral and Human MicroRNAs in Blood: The Beijing Truck Driver Air Pollution Study
Open/View Files
Date
2015
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
National Institute of Environmental Health Sciences
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Hou, L., J. Barupal, W. Zhang, Y. Zheng, L. Liu, X. Zhang, C. Dou, et al. 2015. “Particulate Air Pollution Exposure and Expression of Viral and Human MicroRNAs in Blood: The Beijing Truck Driver Air Pollution Study.” Environmental Health Perspectives 124 (3): 344-350. doi:10.1289/ehp.1408519. http://dx.doi.org/10.1289/ehp.1408519.
Research Data
Abstract
Background: MicroRNAs (miRNAs) are post-transcriptional gene suppressors and potential mediators of environmental effects. In addition to human miRNAs, viral miRNAs expressed from latent viral sequences are detectable in human cells. Objective: In a highly exposed population in Beijing, China, we evaluated the associations of particulate air pollution exposure on blood miRNA profiles. Methods: The Beijing Truck Driver Air Pollution Study (BTDAS) included 60 truck drivers and 60 office workers. We investigated associations of short-term air pollution exposure, using measures of personal PM2.5 (particulate matter ≤ 2.5 μm) and elemental carbon (EC), and ambient PM10 (≤ 10 μm), with blood NanoString nCounter miRNA profiles at two exams separated by 1–2 weeks. Results: No miRNA was significantly associated with personal PM2.5 at a false discovery rate (FDR) of 20%. Short-term ambient PM10 was associated with the expression of 12 miRNAs in office workers only (FDR < 20%). Short-term EC was associated with differential expression of 46 human and 7 viral miRNAs, the latter including 3 and 4 viral miRNAs in office workers and truck drivers, respectively. EC-associated miRNAs differed between office workers and truck drivers with significant effect modification by occupational group. Functional interaction network analysis suggested enriched cellular proliferation/differentiation pathways in truck drivers and proinflammation pathways in office workers. Conclusions: Short-term EC exposure was associated with the expression of human and viral miRNAs that may influence immune responses and other biological pathways. Associations between EC exposure and viral miRNA expression suggest that latent viral miRNAs are potential mediators of air pollution–associated health effects. PM2.5/PM10 exposures showed no consistent relationships with miRNA expression. Citation Hou L, Barupal J, Zhang W, Zheng Y, Liu L, Zhang X, Dou C, McCracken JP, Díaz A, Motta V, Sanchez-Guerra M, Wolf KR, Bertazzi PA, Schwartz JD, Wang S, Baccarelli AA. 2016. Particulate air pollution exposure and expression of viral and human microRNAs in blood: the Beijing Truck Driver Air Pollution Study. Environ Health Perspect 124:344–350; http://dx.doi.org/10.1289/ehp.1408519
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service