Publication: Physical and functional interaction between the α- and γ-secretases: A new model of regulated intramembrane proteolysis
Open/View Files
Date
2015
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
The Rockefeller University Press
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Chen, Allen C., Sumin Kim, Nina Shepardson, Sarvagna Patel, Soyon Hong, and Dennis J. Selkoe. 2015. “Physical and functional interaction between the α- and γ-secretases: A new model of regulated intramembrane proteolysis.” The Journal of Cell Biology 211 (6): 1157-1176. doi:10.1083/jcb.201502001. http://dx.doi.org/10.1083/jcb.201502001.
Research Data
Abstract
Many single-transmembrane proteins are sequentially cleaved by ectodomain-shedding α-secretases and the γ-secretase complex, a process called regulated intramembrane proteolysis (RIP). These cleavages are thought to be spatially and temporally separate. In contrast, we provide evidence for a hitherto unrecognized multiprotease complex containing both α- and γ-secretase. ADAM10 (A10), the principal neuronal α-secretase, interacted and cofractionated with γ-secretase endogenously in cells and mouse brain. A10 immunoprecipitation yielded γ-secretase proteolytic activity and vice versa. In agreement, superresolution microscopy showed that portions of A10 and γ-secretase colocalize. Moreover, multiple γ-secretase inhibitors significantly increased α-secretase processing (r = −0.86) and decreased β-secretase processing of β-amyloid precursor protein. Select members of the tetraspanin web were important both in the association between A10 and γ-secretase and the γ→α feedback mechanism. Portions of endogenous BACE1 coimmunoprecipitated with γ-secretase but not A10, suggesting that β- and α-secretases can form distinct complexes with γ-secretase. Thus, cells possess large multiprotease complexes capable of sequentially and efficiently processing transmembrane substrates through a spatially coordinated RIP mechanism.
Description
Other Available Sources
Keywords
Article
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service