Publication: Coordinated Vascular Endothelial Growth Factor Expression and Signaling During Skeletal Myogenic Differentiation
Open/View Files
Date
2007
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
American Society for Cell Biology (ASCB)
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Bryan, B. A., T. E. Walshe, D. C. Mitchell, J. S. Havumaki, M. Saint-Geniez, A. S. Maharaj, A. E. Maldonado, and P. A. D’Amore. 2007. “Coordinated Vascular Endothelial Growth Factor Expression and Signaling During Skeletal Myogenic Differentiation.” Molecular Biology of the Cell 19 (3) (December 27): 994–1006. doi:10.1091/mbc.e07-09-0856.
Research Data
Abstract
Angiogenesis is largely controlled by hypoxia-driven transcriptional up-regulation and secretion of vascular endothelial growth factor (VEGF) and its binding to the endothelial cell tyrosine receptor kinases, VEGFR1 and VEGFR2. Recent expression analysis suggests that VEGF is expressed in a cell-specific manner in normoxic adult tissue; however, the transcriptional regulation and role of VEGF in these tissues remains fundamentally unknown. In this report we demonstrate that VEGF is coordinately up-regulated during terminal skeletal muscle differentiation. We reveal that this regulation is mediated in part by MyoD homo- and hetero-dimeric transcriptional mechanisms. Serial deletions of the VEGF promoter elucidated a region containing three tandem CANNTG consensus MyoD sites serving as essential sites of direct interaction for MyoD-mediated up-regulation of VEGF transcription. VEGF-null embryonic stem (ES) cells exhibited reduced myogenic differentiation compared with wild-type ES cells, suggesting that VEGF may serve a role in skeletal muscle differentiation. We demonstrate that VEGFR1 and VEGFR2 are expressed at low levels in myogenic precursor cells and are robustly activated upon VEGF stimulation and that their expression is coordinately regulated during skeletal muscle differentiation. VEGF stimulation of differentiating C2C12 cells promoted myotube hypertrophy and increased myogenic differentiation, whereas addition of sFlt1, a VEGF inhibitor, resulted in myotube hypotrophy and inhibited myogenic differentiation. We further provide evidence indicating VEGF-mediated myogenic marker expression, mitogenic activity, migration, and prosurvival functions may contribute to increased myogenesis. These data suggest a novel mechanism whereby VEGF is coordinately regulated as part of the myogenic differentiation program and serves an autocrine function regulating skeletal myogenesis.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service