Publication:
Expression of fibroblast growth factor by F9 teratocarcinoma cells as a function of differentiation

Thumbnail Image

Open/View Files

Date

2018-04-25

Published Version

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

Rockefeller University Press
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Braunhut,Susan J., Lorraine J. Gudas, Tsutomu Kurokawa, Joachim Sasse, and Patricia A. D'Amore. Expression of fibroblast growth factor by F9 teratocarcinoma cells as a function of differentiation. 1989. Journal of Cell Biology 108(6):2467-76.

Research Data

Abstract

Growth factors may be required at sites of mechanical injury and normal wear and tear in vivo, suggesting that the direct action of mechanical forces on cells could lead to growth factor release. Scraping of cells from the tissue culture substratum at 37 degrees C was used to test this possibility. We show that scraping closely mimics in vitro both the transient plasma membrane wounds observed in cells subject to mechanical forces in vivo (McNeil, P. L., and S. Ito. 1989. Gastroenterology. 96:1238-1248) and the transient plasma membrane wounds shown here to occur in endothelial cells under normal culturing conditions. Scraping of endothelial cells from the culturing substratum released into the culture medium a potent growth-promoting activity for Swiss 3T3 fibroblasts. Growth-promoting activity was released rapidly (within 5 min) after scraping but was not subsequently degraded by the endothelial cells for at least 24 h thereafter. A greater quantity of growth-promoting activity was released by cells scraped 4 h after plating than by those scraped 4 or 7 d afterwards. Thus release is not due to scraping-induced disruption of extracellular matrix. Release was only partially cold inhibitable, was poorly correlated with the level of cell death induced by scraping, and did not occur when cells were killed with metabolic poisons. These results suggest that mechanical disruption of plasma membrane, either transient or permanent, is the essential event leading to release. A basic fibroblast growth factor-like molecule and not platelet-derived growth factor appears to be partially responsible for the growth-promoting activity. We conclude that one biologically relevant route of release of basic fibroblast growth factor, a molecule which lacks the signal peptide sequence for transport into the endoplasmic reticulum, could be directly through mechanically induced membrane disruptions of endothelial cells growing in vivo and in vitro.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories