Publication:
Vertical leaping mechanics of the Lesser Egyptian Jerboa reveal specialization for maneuverability rather than elastic energy storage

Thumbnail Image

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Nature
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Moore, Talia Y., Alberto M. Rivera, and Andrew A. Biewener. 2017. “Vertical Leaping Mechanics of the Lesser Egyptian Jerboa Reveal Specialization for Maneuverability Rather Than Elastic Energy Storage.” Frontiers in Zoology 14 (1) (July 3). doi:10.1186/s12983-017-0215-z.

Research Data

Abstract

Background Numerous historical descriptions of the Lesser Egyptian jerboa, Jaculus jaculus, a small bipedal mammal with elongate hindlimbs, make special note of their extraordinary leaping ability. We observed jerboa locomotion in a laboratory setting and performed inverse dynamics analysis to understand how this small rodent generates such impressive leaps. We combined kinematic data from video, kinetic data from a force platform, and morphometric data from dissections to calculate the relative contributions of each hindlimb muscle and tendon to the total movement. Results Jerboas leapt in excess of 10 times their hip height. At the maximum recorded leap height (not the maximum observed leap height), peak moments for metatarso-phalangeal, ankle, knee, and hip joints were 13.1, 58.4, 65.1, and 66.9 Nmm, respectively. Muscles acting at the ankle joint contributed the most work (mean 231.6 mJ / kg Body Mass) to produce the energy of vertical leaping, while muscles acting at the metatarso-phalangeal joint produced the most stress (peak 317.1 kPa). The plantaris, digital flexors, and gastrocnemius tendons encountered peak stresses of 25.6, 19.1, and 6.0 MPa, respectively, transmitting the forces of their corresponding muscles (peak force 3.3, 2.0, and 3.8 N, respectively). Notably, we found that the mean elastic energy recovered in the primary tendons of both hindlimbs comprised on average only 4.4% of the energy of the associated leap. Conclusions The limited use of tendon elastic energy storage in the jerboa parallels the morphologically similar heteromyid kangaroo rat, Dipodomys spectabilis. When compared to larger saltatory kangaroos and wallabies that sustain hopping over longer periods of time, these small saltatory rodents store and recover less elastic strain energy in their tendons. The large contribution of muscle work, rather than elastic strain energy, to the vertical leap suggests that the fitness benefit of rapid acceleration for predator avoidance dominated over the need to enhance locomotor economy in the evolutionary history of jerboas.

Description

Other Available Sources

Keywords

Jerboa, Inverse dynamics, Muscle-tendon stresses, Ricochetal bipedal locomotion

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories

Story
Vertical leaping mechanics of the Lesser… : DASH Story 2021-12-16
Discussing the locomotion of Jerboas with a friend of mine, I happened to wonder how their endurance compared to that of a kangaroo. A Harvard paper was the only reference I could find for hip elasticity, that let me compare the relative energy used. It's no huge telling story, but making documents like this available to the public definitely helped the both of us learn something we wouldn't be able to otherwise. I'm planning on citing this information to Wikipedia, too, to help others learn like we did.