Publication: Molecular Basis for Unidirectional Scaffold Switching of Human Plk4 in Centriole Biogenesis
Open/View Files
Date
2014
Published Version
Journal Title
Journal ISSN
Volume Title
Publisher
The Harvard community has made this article openly available. Please share how this access benefits you.
Citation
Park, S., J. Park, T. Kim, J. H. Kim, M. Kwak, B. Ku, L. Tian, et al. 2014. “Molecular Basis for Unidirectional Scaffold Switching of Human Plk4 in Centriole Biogenesis.” Nature structural & molecular biology 21 (8): 696-703. doi:10.1038/nsmb.2846. http://dx.doi.org/10.1038/nsmb.2846.
Research Data
Abstract
Polo-like kinase 4 (Plk4) is a key regulator of centriole duplication, an event critical for the maintenance of genomic integrity. Here we showed that Plk4 relocalizes from the inner Cep192 ring to the outer Cep152 ring as newly recruited Cep152 assembles around the Cep192-encircled daughter centriole. Crystal structure analyses revealed that Cep192 - and Cep152-derived peptides bind the cryptic polo box (CPB) of Plk4 in opposite orientations and in a mutually exclusive manner. The Cep152-peptide bound to the CPB markedly better than the Cep192-peptide and effectively snatched the CPB away from a preformed CPB–Cep192-peptide complex. A cancer-associated Cep152 mutation impairing the Plk4 interaction induced defects in procentriole assembly and chromosome segregation. Thus, Plk4 is intricately regulated in time and space through ordered interactions with two distinct scaffolds, Cep192 and Cep152, and a failure in this process may lead to human cancer.
Description
Other Available Sources
Keywords
Terms of Use
This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service