Publication:
A Novel Mechanism for Color Vision: Pupil Shape and Chromatic Aberration Can Provide Spectral Discrimination for Color Blind Organisms.

Thumbnail Image

Date

2016-07-20

Published Version

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Stubbs, Alexander L., and Christopher W. Stubbs. "A Novel Mechanism for Color Vision: Pupil Shape and Chromatic Aberration Can Provide Spectral Discrimination for “Color Blind” Organisms." Working Paper, bioRxiv: 017756.

Research Data

Abstract

We present a mechanism by which organisms with only a single photoreceptor, that have a monochromatic view of the world, can achieve color discrimination. The combination of an off axis pupil and the principle of chromatic aberration (where light of different colors focus at different distances behind a lens) can combine to provide color-blind animals with a way to distinguish colors. As a specific example we constructed a computer model of the visual system of cephalopods, (octopus, squid, and cuttlefish) that have a single unfiltered photoreceptor type. Nevertheless, cephalopods dramatically change color both to produce chromatically matched camouflage and to signal conspecifics. This presents a paradox, an apparent ability to determine color in organisms with a monochromatic visual system that has been a long-standing puzzle. We demonstrate that chromatic blurring dominates the visual acuity in these animals, and we quantitatively show how chromatic aberration can be exploited, especially through non axial pupils that are characteristic of cephalopods, to obtain spectral information. This mechanism is consistent with the extensive suite of visual/behavioral and physiological data that have been obtained from cephalopod studies, and resolves the apparent paradox of vivid chromatic behaviors in color-blind animals. Moreover, this proposed mechanism has potential applicability in any organisms with limited photoreceptor complements, such as spiders and dolphins.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories