Publication:
CMBPol Mission Concept Study: Probing Inflation with CMB Polarization

Thumbnail Image

Date

2009

Published Version

Published Version

Journal Title

Journal ISSN

Volume Title

Publisher

The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Baumann, Daniel, Mark G. Jackson, Peter Adshead, Alexandre Amblard, Amjad Ashoorioon, Nicola Bartolo, Rachel Bean, Maria Beltran, Francesco de Bernardis, Simeon Bird, Xingang Chen, Daniel J. H. Chung, Loris Colombo, Asantha Cooray, Paolo Creminelli, Scott Dodelson, Joanna Dunkley, Cora Dvorkin, Richard Easther, Fabio Finelli, Raphael Flauger, Mark Hertzberg, Katherine Jones-Smith, Shamit Kachru, Kenji Kadota, Justin Khoury, William H. Kinney, Eiichiro Komatsu, Lawrence M. Krauss, Julien Lesgourgues, Andrew Liddle, Michele Liguori, Eugene Lim, Andrei Linde, Sabino Matarrese, Harsh Mathur, Liam McAllister, Alessandro Melchiorri, Alberto Nicolis, Luca Pagano, Hiranya V. Peiris, Marco Peloso, Levon Pogosian, Elena Pierpaoli, Antonio Riotto, Uros Seljak, Leonardo Senatore, Sarah Shandera, Eva Silverstein. 2009. CMBPol Mission Concept Study: Probing Inflation with CMB Polarization. Proceedings, CMB Polarization Workshop, Batavia, USA, June 23-26, 2008: 1141:10-120.

Research Data

Abstract

We summarize the utility of precise cosmic microwave background (CMB) polarization measurements as probes of the physics of inflation. We focus on the prospects for using CMB measurements to differentiate various inflationary mechanisms. In particular, a detection of primordial B-mode polarization would demonstrate that inflation occurred at a very high energy scale, and that the inflaton traversed a super-Planckian distance in field space. We explain how such a detection or constraint would illuminate aspects of physics at the Planck scale. Moreover, CMB measurements can constrain the scale-dependence and non-Gaussianity of the primordial fluctuations and limit the possibility of a significant isocurvature contribution. Each such limit provides crucial information on the underlying inflationary dynamics. Finally, we quantify these considerations by presenting forecasts for the sensitivities of a future satellite experiment to the inflationary parameters.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories