Publication:
Removing phase-space restrictions in factorized cross sections

Thumbnail Image

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

American Physical Society (APS)
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Feige, Ilya, Matthew D. Schwartz, and Kai Yan. 2015. “Removing Phase-Space Restrictions in Factorized Cross Sections.” Phys. Rev. D 91 (9) (May 26). doi:10.1103/physrevd.91.094027.

Research Data

Abstract

Factorization in gauge theories holds at the amplitude or amplitude-squared level for states of given soft or collinear momenta. When performing phase-space integrals over such states, one would generally like to avoid putting in explicit cuts to separate soft from collinear momenta. Removing these cuts induces an overcounting of the softcollinear region and adds new infrared-ultraviolet divergences in the collinear region. In this paper, we first present a regulator-independent subtraction algorithm for removing soft-collinear overlap at the amplitude level which may be useful in pertubative QCD. We then discuss how both the soft-collinear and infrared-ultraviolet overlap can be undone for certain observables in a way which respects factorization. Our discussion clarifies some of the subtleties in phase-space subtractions and includes a proof of the infrared finiteness of a suitably subtracted jet function. These results complete the connection between factorized QCD and Soft-Collinear Effective Theory .

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Open Access Policy Articles (OAP), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories